振荡间断点
1个回答
展开全部
振荡间断点是指当函数f(x)趋向于x0时,极限不稳定存在的点。你说的sin(1/x)在x=0处是典型的极限不稳定存在的例子。
那么如何区分(1)第一类间断点和第二类间断点呢?
(2)第二类间断点中的无穷振荡点和振荡间断点呢?
其实只要把握好本质上区别就好。
解答(1)第一类就是左右极限都存在。但是不等于该点的函数值,左右极限也相等时,称为可去间断点;不相等时,为跳跃间断点。
解答(2)第二类就是左右极限有一个不存在。
第二类又可分为两类:即无穷间断点和振荡间断点。这二者的区分也是很显然的。无穷间断点,要求极限值一直保持无穷大。而振荡间断点在趋近它的时侯,取值在不断的变化,不一定为无穷。
用你的例子:sin1/x
x趋向0的过程中,一旦x=1/(2kpi+pi/2)时,取值是不为无穷的,而且一直在波动。因此不属于无穷间断点。那当然也就是振荡间断点咯……
不用客气,还有问题的话,尽管提,这个我还是比较清楚的,呵~
那么如何区分(1)第一类间断点和第二类间断点呢?
(2)第二类间断点中的无穷振荡点和振荡间断点呢?
其实只要把握好本质上区别就好。
解答(1)第一类就是左右极限都存在。但是不等于该点的函数值,左右极限也相等时,称为可去间断点;不相等时,为跳跃间断点。
解答(2)第二类就是左右极限有一个不存在。
第二类又可分为两类:即无穷间断点和振荡间断点。这二者的区分也是很显然的。无穷间断点,要求极限值一直保持无穷大。而振荡间断点在趋近它的时侯,取值在不断的变化,不一定为无穷。
用你的例子:sin1/x
x趋向0的过程中,一旦x=1/(2kpi+pi/2)时,取值是不为无穷的,而且一直在波动。因此不属于无穷间断点。那当然也就是振荡间断点咯……
不用客气,还有问题的话,尽管提,这个我还是比较清楚的,呵~
长沙永乐康仪器
2024-03-19 广告
2024-03-19 广告
采用变频马达,从低速到高速,无级变速可调. 构造独特,空间占用小,负载量大。 很多达到12个瓶位.成倍提高效能. 整个设备运转时震动很小,比较安全和可靠. 可以定时或连续运行。 即可垂直振荡,又可倾斜振荡.且倾斜角度可调. 倾斜振荡时混合更...
点击进入详情页
本回答由长沙永乐康仪器提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询