三阶矩阵的秩为1,入=0是二重特征根
已知A是三阶矩阵,r(A)=1,则λ=0是()B至少是A的二重特征向量.还有,λ=0与矩阵的秩有何关可是为什么是“至少是A的二重特征值”而不是“必是A的二重特征值”?...
已知A是三阶矩阵,r(A)=1,则λ=0是() B至少是A的二重特征向量.还有,λ=0与矩阵的秩有何关
可是为什么是“至少是A的二重特征值”而不是“必是A的二重特征值”? 展开
可是为什么是“至少是A的二重特征值”而不是“必是A的二重特征值”? 展开
2个回答
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
矩阵若可以对角化.矩阵就和这个对角矩阵相似,这个对角矩阵的对角线的值就可以是特征值.
相似矩阵的秩相等.
所以,有n个非0的特征值(例如λ=1是二重根的话,就算是两个非0特征值),矩阵的秩就是n.
对这题,r(A)=1,那么如果A对角化的话,对角线上肯定有两个0,0是二重特征根.
你这问题真好,算了半天.0还可以是三重根,是矩阵不可以对角化的情况里面的,和之前的结论不冲突,因为之前都假设A可以对角化.
举个例子([0,1,1],[0,-1,-1],[0,1,1])
相似矩阵的秩相等.
所以,有n个非0的特征值(例如λ=1是二重根的话,就算是两个非0特征值),矩阵的秩就是n.
对这题,r(A)=1,那么如果A对角化的话,对角线上肯定有两个0,0是二重特征根.
你这问题真好,算了半天.0还可以是三重根,是矩阵不可以对角化的情况里面的,和之前的结论不冲突,因为之前都假设A可以对角化.
举个例子([0,1,1],[0,-1,-1],[0,1,1])
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询