展开全部
(4)
1 +1/2 +1/2^2+...+1/2^n = 2[1 -(1/2)^(n+1)]
(n+1)+2(n+2)+...+n(n+n)
=[n+2n+....+n(n)] +(1^2+2^2+...+n^2)
=n(1+2+...+n) + (1/6)n(n+1)(2n+1)
=(1/2)n^2.(n+1) + (1/6)n(n+1)(2n+1)
n^3 的系数 = 1/2 + 1/3 = 5/6
lim(n->无穷) n^3. (1 +1/2 +1/2^2+...+1/2^n) /[ (n+1)+2(n+2)+...+n(n+n) ]
=lim(n->无穷) n^3. { 2[1 -(1/2)^(n+1)] } / [(5/6)n^3 ]
=lim(n->无穷) { 2[1 -(1/2)^(n+1)] } / (5/6)
=12/5
1 +1/2 +1/2^2+...+1/2^n = 2[1 -(1/2)^(n+1)]
(n+1)+2(n+2)+...+n(n+n)
=[n+2n+....+n(n)] +(1^2+2^2+...+n^2)
=n(1+2+...+n) + (1/6)n(n+1)(2n+1)
=(1/2)n^2.(n+1) + (1/6)n(n+1)(2n+1)
n^3 的系数 = 1/2 + 1/3 = 5/6
lim(n->无穷) n^3. (1 +1/2 +1/2^2+...+1/2^n) /[ (n+1)+2(n+2)+...+n(n+n) ]
=lim(n->无穷) n^3. { 2[1 -(1/2)^(n+1)] } / [(5/6)n^3 ]
=lim(n->无穷) { 2[1 -(1/2)^(n+1)] } / (5/6)
=12/5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
考研数列极限数学题目我来答:这里要用到
1+2+...+n = n(n+1)/2;
1²+2²+...+ n² = n(n+1)(2n+1)/6;
其它留给提问者去算了,……
1+2+...+n = n(n+1)/2;
1²+2²+...+ n² = n(n+1)(2n+1)/6;
其它留给提问者去算了,……
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询