高阶无穷小有几个?
1个回答
展开全部
1、高阶无穷小:设α与β都是x的函数,且limα=0,limβ=0,即α,β都是无穷小。
2、低阶无穷小:符号φ(x)=o(ψ(x))表示函数φ(x)是比函数ψ(x)较高阶的无穷小,或φ(x)是比ψ(x)较低阶的无穷大。
3、高阶无穷小而不叫叫低阶无穷小的原因:β是比α较同阶的无穷小,即β→0与α→0是同样程度;若lim(β/α)=1,就说β是比α较等阶的无穷小,记作α∽β。
性质分析
在非标准分析中,无穷小量也和实数一样被视为具体的“数”,这些数比零大,但比任何正实数都小。前面用序列来定义无穷小量的经典方法或多或少有些难于处理,而“非标准”的无穷小量。
自变量在一定变动方式下其极限为数量0,称一个函数是无穷小量,一定要说明自变量的变化趋势。例如 在 时是无穷小量,而不能笼统说 是无穷小量。也不能说无穷小是 , 是指负无穷大。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询