已知x、y、z、是正实数,且x+y+z=xyz,求1/(x+y)+1/(y+z)+1/(x+z)的最大值.

 我来答
世纪网络17
2022-09-07 · TA获得超过5948个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:142万
展开全部
配凑柯西不等式1/(x+y)+1/(y+z)+1/(z+x)≤[1/2(xy)^0.5]+[1/2(yz)^0.5]+[1/2(zx)^0.5]=(1/2){1*[z/(x+y+z)]^0.5+1*[x/(x+y+z)]^0.5+1*[y/(x+y+z)]^0.5}≤(1^2+1^2+1^2)[x/(x+y+z)+y/(x+y+z)+z/(x+y+z)]^0.5=√3/2 (这种证法综合运用了柯西不等式和基本不等式) 因此λ只要大于等于√3/2就行了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式