曲线积分的应用:求质量均匀心脏线的质心
1个回答
2022-09-29 · 百度认证:北京惠企网络技术有限公司官方账号
关注
展开全部
^面积=2*1/2∫r^2dθ 积分区间(0,π)
∫∫xdxdy
=∫r*cosθ*r^2dθ 积分区间(0,2π)
=∫[a(1+cosθ)]^3*cosθdθ
=a^3*∫(cosθ+3(cosθ)^2+3(cosθ)^3+(cosθ)^4dθ
=a^3*(sinθ+3/2(θ+1/2sinθ)+3sinθ-(sinθ)^3+∫(cosθ)^4dθ
∫(cosθ)^4dθ=3θ/8+sin4θ/32+sin2θ/4
代入区间(0,2π)
只有3/2θ,3θ/8 不为0
所以原式=15πa^3/4
相除=5/6*a
扩展资料:
先看一个例子:设有一曲线形构件占xOy面上的一段曲线 ,设构件的密度分布函数为ρ(x,y),设ρ(x,y)定义在L上且在L上连续,唯凳运求构件的质量。
对于密度均匀的物件可以直接用ρV求得质量;对于密度粗腔不均匀的物件,就需要用到曲线积分,dm=ρ(x,y)ds;所以m=∫ρ(x,y)ds;L是积分路指梁径,∫ρ(x,y)ds就叫做对弧长的曲线积分。
参考资料来源:百度百科-曲线积分
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询