sinx在哪些点的极限不存在
1个回答
展开全部
limx→正无穷,sinx为【-1,1】的区间。
在lim中,sinx当x趋向于无穷时,它的极限不存在,也就是说这个极限是没有的。先看当x从0变化到2π时,sinx从0增大到1,又从1减小到0,再减小到-1,再增大到0,当x继续变化时,sinx又重复上述变化,周而复始,永不接近某一常数,当x从0变化到∞时,也是类似的,故极限不存在。
sin函数介绍:
sinx函数,即正弦函数,三角函数的一种。
对于任意一个实数x都对应着唯一的角(弧度制中等于这个实数),而这个角又对应着唯一确定的正弦值sinx,这样,对于任意一个实数x都有唯一确定的值sinx与它对应,按照这个对应法则所建立的函数,表示为y=sinx,叫做正弦函数。
在lim中,sinx当x趋向于无穷时,它的极限不存在,也就是说这个极限是没有的。先看当x从0变化到2π时,sinx从0增大到1,又从1减小到0,再减小到-1,再增大到0,当x继续变化时,sinx又重复上述变化,周而复始,永不接近某一常数,当x从0变化到∞时,也是类似的,故极限不存在。
sin函数介绍:
sinx函数,即正弦函数,三角函数的一种。
对于任意一个实数x都对应着唯一的角(弧度制中等于这个实数),而这个角又对应着唯一确定的正弦值sinx,这样,对于任意一个实数x都有唯一确定的值sinx与它对应,按照这个对应法则所建立的函数,表示为y=sinx,叫做正弦函数。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询