∫1/(sinx+cosx)dx,这题咋做啊?? 5
第一个....怎么对照公式啊?(没有∫cscxdx的公式,只有∫cscxcotxdx或∫(cscx)^2dx的。)第二个....怎么那么麻烦啊?有简单一点的方法么?我听我...
第一个....怎么对照公式啊?(没有∫csc x dx的公式,只有∫cscxcotxdx或∫(cscx)^2 dx的。)
第二个....怎么那么麻烦啊?
有简单一点的方法么?我听我同学说是用万能公式...不过到底怎么用啊? 展开
第二个....怎么那么麻烦啊?
有简单一点的方法么?我听我同学说是用万能公式...不过到底怎么用啊? 展开
4个回答
展开全部
∫1/(sinx+cosx)dx
=∫dx/√2sin(x+π/4)
=-(√2/2)∫dcos(x+π/4)/sin^2(x+π/4)
=-(√2/4){∫dcos(x+π/4)/[1-cos(x+π/4)]+∫dcos(x+π/4)/[1+cos(x+π/4)]}
=-(√2/4)ln{[1+cos(x+π/4)]/[1-cos(x+π/4)]}+c
=(√2/4)ln{[1-cos(x+π/4)]/[1+cos(x+π/4)]}+c
扩展资料
设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+ C(其中,C为任意常数)叫做函数f(x)的不定积分,又叫做函数f(x)的反导数,记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。
其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数或积分常量,求已知函数的不定积分的过程叫做对这个函数进行不定积分。
求函数f(x)的不定积分,要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。
展开全部
这个是三角函数的不定积分,分母应先进性化简,计算步骤为:
∫1/(sinx+cosx)dx
=∫dx/√2sin(x+π/4)
=-(√2/2)∫dcos(x+π/4)/sin^2(x+π/4)
=-(√2/4){∫dcos(x+π/4)/[1-cos(x+π/4)]+∫dcos(x+π/4)/[1+cos(x+π/4)]}
=-(√2/4)ln{[1+cos(x+π/4)]/[1-cos(x+π/4)]}+c
=(√2/4)ln{[1-cos(x+π/4)]/[1+cos(x+π/4)]}+c
归纳一下,这类分母是形如asinx+bcosx的情形,可以利用三角函数的公式,化简成形如Asin(x+t)或者Bcos(x+t)的形式,再进行求解。
∫1/(sinx+cosx)dx
=∫dx/√2sin(x+π/4)
=-(√2/2)∫dcos(x+π/4)/sin^2(x+π/4)
=-(√2/4){∫dcos(x+π/4)/[1-cos(x+π/4)]+∫dcos(x+π/4)/[1+cos(x+π/4)]}
=-(√2/4)ln{[1+cos(x+π/4)]/[1-cos(x+π/4)]}+c
=(√2/4)ln{[1-cos(x+π/4)]/[1+cos(x+π/4)]}+c
归纳一下,这类分母是形如asinx+bcosx的情形,可以利用三角函数的公式,化简成形如Asin(x+t)或者Bcos(x+t)的形式,再进行求解。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
把分母化成(根号2)* sin(x+pi/4),然后化成csc(x+pi/4),再对照公式即可求出。
学不定积分不是有一些公式的吗?照那个∫csc x dx 的公式套就行啦,x换成(x+pi/4),前面再乘以二分之根号二就行啦,我这种方法是最简单的了。
学不定积分不是有一些公式的吗?照那个∫csc x dx 的公式套就行啦,x换成(x+pi/4),前面再乘以二分之根号二就行啦,我这种方法是最简单的了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫1/(sinx+cosx)dx
=∫1/[√2sin(x+π/4)]dx
=√2/2∫1/sin(x+π/4)d(x+π/4)
令t=x+π/4则
上式=√2/2∫1/sint dt
=√2/2∫1/(2sint/2 cost/2) dt
=√2/2∫1/(tant/2 cos²t/2) dt/2
=√2/2∫1/(tant/2) d(tant/2)
=√2/2ln|tant/2|+C
故:
原式=√2/2ln|tan(x/2+π/8)|+C
=∫1/[√2sin(x+π/4)]dx
=√2/2∫1/sin(x+π/4)d(x+π/4)
令t=x+π/4则
上式=√2/2∫1/sint dt
=√2/2∫1/(2sint/2 cost/2) dt
=√2/2∫1/(tant/2 cos²t/2) dt/2
=√2/2∫1/(tant/2) d(tant/2)
=√2/2ln|tant/2|+C
故:
原式=√2/2ln|tan(x/2+π/8)|+C
参考资料: 时间有限,百度告诉你
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |