解方程:(x²+x+1)/(x²+1)+(2x²+x+2)/(x²+x+1)=19/6
3个回答
展开全部
:(x²+x+1)/(x²+1)+(2x²+x+2)/(x²+x+1)=19/6
:(x²+x+1)/(x²带塌+1)+(x²+x+1+x²+1)/(x²蠢扰圆+x+1)=19/6
:(x²+x+1)/(x²+1)+1+ (x²+1)/(x²+x+1)=19/6
设:(x²+x+1)/(x²+1)=y
∴李数原方程可化为
y +1+1/y=19/6
6y²-13y+6=0
(3y-2)(2y-3)=0
∴y=2/3 y=3/2
∴:(x²+x+1)/(x²+1)=2/3 :(x²+x+1)/(x²+1)=3/2
2x²+2=3x²+3x+3 3x²+3=2x²+2x+2
x²+3x+1=0 x²-2x+1=0
x=(-3±√5)/2 x=1
:(x²+x+1)/(x²带塌+1)+(x²+x+1+x²+1)/(x²蠢扰圆+x+1)=19/6
:(x²+x+1)/(x²+1)+1+ (x²+1)/(x²+x+1)=19/6
设:(x²+x+1)/(x²+1)=y
∴李数原方程可化为
y +1+1/y=19/6
6y²-13y+6=0
(3y-2)(2y-3)=0
∴y=2/3 y=3/2
∴:(x²+x+1)/(x²+1)=2/3 :(x²+x+1)/(x²+1)=3/2
2x²+2=3x²+3x+3 3x²+3=2x²+2x+2
x²+3x+1=0 x²-2x+1=0
x=(-3±√5)/2 x=1
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(x²+x+1)/(x²+1)+(2x²+x+2)/(x²+x+1)=19/6
(x²+x+1)²/(x²+1)(x²+x+1)+(2x²+x+2)(x²+1)/(x²+x+1)(x²+1)=19/6
(x∧4+2x³+3x²+2x+1)+(2x∧4+x³+4x²+x+2)/(x²+1)(x²+x+1)=19/6
(3x∧4+3x³+7x²+3x+3)/(x∧4+x³蠢埋+2x²+x+1)=19/6
3+x²/(x∧喊谈4+x³+2x²+x+1)=19/6
x/(x²+1)(x²+x+1)=1/郑档碰6
∴x=1
(x²+x+1)²/(x²+1)(x²+x+1)+(2x²+x+2)(x²+1)/(x²+x+1)(x²+1)=19/6
(x∧4+2x³+3x²+2x+1)+(2x∧4+x³+4x²+x+2)/(x²+1)(x²+x+1)=19/6
(3x∧4+3x³+7x²+3x+3)/(x∧4+x³蠢埋+2x²+x+1)=19/6
3+x²/(x∧喊谈4+x³+2x²+x+1)=19/6
x/(x²+1)(x²+x+1)=1/郑档碰6
∴x=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |