设a,b,c,d均为整数,且关于x的四个方程(a-2b)x=1,(b-3c)x=1,(c-4d)x=1,x+100=d的根都是正数

设a,b,c,d均为整数,且关于x的四个方程(a-2b)x=1,(b-3c)x=1,(c-4d)x=1,x+100=d的根都是正数,试求a可能取得的最小值是多少?... 设a,b,c,d均为整数,且关于x的四个方程(a-2b)x=1,(b-3c)x=1,(c-4d)x=1,x+100=d的根都是正数,试求a可能取得的最小值是多少? 展开
 我来答
樱花KE73
2014-08-13 · TA获得超过155个赞
知道答主
回答量:152
采纳率:0%
帮助的人:59.9万
展开全部
由已知(a-2b)x=1,且根x>0,所以a-2b>0
又因为a,b均为整数,所以a-2b也为整数
所以a-2b≥1,即a≥2b+1.
同理可得,b≥3c+1,c≥4d+1,d≥101.所以a≥2b+1≥2(3c+1)+1=6c+3
≥6(4d+1)+3=24d+9≥24×101+9=2433,
故a可能取得的最小值为2433.
答:a可能取得最小值是2433
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式