设三角形ABC的内角A,B,C所对的边分别为a,b,c,且acosC-1/2c=b 1.求角A的
设三角形ABC的内角A,B,C所对的边分别为a,b,c,且acosC-1/2c=b1.求角A的大小2.若a=1,求三角形ABC的周长的取值范围...
设三角形ABC的内角A,B,C所对的边分别为a,b,c,且acosC-1/2c=b
1.求角A的大小
2.若a=1,求三角形ABC的周长的取值范围 展开
1.求角A的大小
2.若a=1,求三角形ABC的周长的取值范围 展开
展开全部
(1)∵acosC-1/2c=b,
由正弦定理得2RsinAcosC-1/2×2RsinC=2RsinB,
即sinAcosC-1/2sinC=sinB,
又∵sinB=sin(A+C)=sinAcosC+cosAsinC,
∴1/2sinC=-cosAsinC,
∵sinC≠0,
∴cosA=-1/2 ,
又∵0<A<π,
∴A=2π/3.
(2)a=1,A=120°
正玄定理:b/sinB=c/sinC=a/sinA=2
a+b+c=1+2(sinB+sinC)=1+2(sinB+sin(60-B))
和差化积把sin(60-B)拆开,整理得到U*sin(B)+V*cos(b)的式子
然后再整理成sin(B+thta)
最后根据-1《sin《1,得到a+b+c的极值
剩下的下面的人补吧,懒得做了
由正弦定理得2RsinAcosC-1/2×2RsinC=2RsinB,
即sinAcosC-1/2sinC=sinB,
又∵sinB=sin(A+C)=sinAcosC+cosAsinC,
∴1/2sinC=-cosAsinC,
∵sinC≠0,
∴cosA=-1/2 ,
又∵0<A<π,
∴A=2π/3.
(2)a=1,A=120°
正玄定理:b/sinB=c/sinC=a/sinA=2
a+b+c=1+2(sinB+sinC)=1+2(sinB+sin(60-B))
和差化积把sin(60-B)拆开,整理得到U*sin(B)+V*cos(b)的式子
然后再整理成sin(B+thta)
最后根据-1《sin《1,得到a+b+c的极值
剩下的下面的人补吧,懒得做了
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询