X>0时,证明不等式ln(1+x)>x-1/2x成立 如上
1个回答
展开全部
令f(x)=ln(1+x)-[(x-1)/2x],则f'(x)=[1/(x+1)]-(1/2x^2)=[(2x^3+2x^2)/(2x^2-x-1)]因为x>0,所以2x^3+2x^2>0令g(x)=2x^2-x-1=2[x-(1/4)]^2-(9/8)当g(x)=0时,x=-(1/2)或x=1因为x>0,根据函数g(x)=2x^2-x-1图像,当00,所以f(x)在区间(1,+∞)上递增所以当x=1时,f(x)取得最小值,f(x)=ln2>0所以ln(1+x)>(x-1)/2x
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询