微分方程怎么解?
2个回答
展开全部
设f(x)=sin x
所以 f'(x)=cos x
∫ f'(x)dx=∫(cos x)dx(在这里,即是求cos x的原函数)
所以 ∫(cos x)dx=sin x+c
即∫ f'(x)dx=f(x)+c
而∫df(x)=f(x)+c中的df(x)就是求f(x)的微分,即f'(x)的意思
所以 f'(x)=cos x
∫ f'(x)dx=∫(cos x)dx(在这里,即是求cos x的原函数)
所以 ∫(cos x)dx=sin x+c
即∫ f'(x)dx=f(x)+c
而∫df(x)=f(x)+c中的df(x)就是求f(x)的微分,即f'(x)的意思
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
火丰科技
2024-11-13 广告
2024-11-13 广告
致力于从事惯性测量、卫星导航等产品的研发、生产的高新技术企业。公司旗下投资多条自动化生产线分别分布于西安、深圳、珠海等地,其中包括光纤陀螺、MEMS惯导、石英加速度计、电子对抗通信产品生产线,拥有中国先进的惯性导航产品及电子对抗产品生产条件...
点击进入详情页
本回答由火丰科技提供
展开全部
不是所有的二阶常微分方程都有通解
举例子
解:微分方程为xy"+(x+4)y'+3y=4x+4,假设微分方程xy"+(x+4)y'+3y=0的特解为y=xʳ,将特解带入方程,有x(xʳ)"+(x+4)(xʳ)'+3xʳ=0,r(r-1)xʳ⁻¹+r(x+4)xʳ⁻¹+3xʳ=0,r(r-1)xʳ⁻¹+4rxʳ⁻¹+rxʳ+3xʳ=0,(r²+3r)+(r+3)x=0,(r+3)(r+x)=0,得:r=-3,则微分方程xy"+(x+4)y'+3y=0的特解为y=x⁻³,再设微分方程的通解为y=x⁻³u,有x(x⁻³u)"+(x+4)(x⁻³u)'+3x⁻³u=0,x(x⁻³u"-3x⁻⁴u'-3x⁻⁴u'+12x⁻⁵u)+(x+4)(x⁻³u'-3x⁻⁴u)+3x⁻³u=0,x(x⁻³u"-6x⁻⁴u'+12x⁻⁵u)+(x+4)(x⁻³u'-3x⁻⁴u)+3x⁻³u=0,x²u"-6xu'+12u+(x+4)(xu'-3u)+3xu=0,x²u"+(x²-2x)u'=0,u"×eˣ/x²+eˣ(1/x²-2/x³)u'=0,(u'eˣ/x²)'=0,u'eˣ/x²=a(a为任意常数),u'=ax²e⁻ˣ,u=-ax²e⁻ˣ-2axe⁻ˣ-2ae⁻ˣ+c(为任意常数),微分方程xy"+(x+4)y'+3y=0的通解为y=(-ax⁻¹-2ax⁻²-2ax⁻³)e⁻ˣ+cx⁻³(c为任意常数);设原微分方程的特解为y=px+q,有p(x+4)+3(px+q)=4x+4,4px+4p+3q=4x+4,有4p=4,4p+3q=4,得:p=1,q=0,微分方程的特解为y=x,通解为y=(-ax⁻¹-2ax⁻²-2ax⁻³)e⁻ˣ+cx⁻³+x
举例子
解:微分方程为xy"+(x+4)y'+3y=4x+4,假设微分方程xy"+(x+4)y'+3y=0的特解为y=xʳ,将特解带入方程,有x(xʳ)"+(x+4)(xʳ)'+3xʳ=0,r(r-1)xʳ⁻¹+r(x+4)xʳ⁻¹+3xʳ=0,r(r-1)xʳ⁻¹+4rxʳ⁻¹+rxʳ+3xʳ=0,(r²+3r)+(r+3)x=0,(r+3)(r+x)=0,得:r=-3,则微分方程xy"+(x+4)y'+3y=0的特解为y=x⁻³,再设微分方程的通解为y=x⁻³u,有x(x⁻³u)"+(x+4)(x⁻³u)'+3x⁻³u=0,x(x⁻³u"-3x⁻⁴u'-3x⁻⁴u'+12x⁻⁵u)+(x+4)(x⁻³u'-3x⁻⁴u)+3x⁻³u=0,x(x⁻³u"-6x⁻⁴u'+12x⁻⁵u)+(x+4)(x⁻³u'-3x⁻⁴u)+3x⁻³u=0,x²u"-6xu'+12u+(x+4)(xu'-3u)+3xu=0,x²u"+(x²-2x)u'=0,u"×eˣ/x²+eˣ(1/x²-2/x³)u'=0,(u'eˣ/x²)'=0,u'eˣ/x²=a(a为任意常数),u'=ax²e⁻ˣ,u=-ax²e⁻ˣ-2axe⁻ˣ-2ae⁻ˣ+c(为任意常数),微分方程xy"+(x+4)y'+3y=0的通解为y=(-ax⁻¹-2ax⁻²-2ax⁻³)e⁻ˣ+cx⁻³(c为任意常数);设原微分方程的特解为y=px+q,有p(x+4)+3(px+q)=4x+4,4px+4p+3q=4x+4,有4p=4,4p+3q=4,得:p=1,q=0,微分方程的特解为y=x,通解为y=(-ax⁻¹-2ax⁻²-2ax⁻³)e⁻ˣ+cx⁻³+x
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |