求点M(0,2)到双曲线x^2-y^2=1的最小距离

 我来答
绿馨乎03
2009-07-13 · TA获得超过388个赞
知道小有建树答主
回答量:151
采纳率:0%
帮助的人:128万
展开全部
以M(0,2)为圆心,以最短距离r为半径设一个方程:x^2+(y-2)^2=r^2
然后将两个方程联立消掉x项,得到一个关于y与r的二次方程,再由于y值只有一个值,求其Delta=0得到r的值即可!(其思想就是数形结合的方法,将点到曲线的距离的唯一性看成圆于曲线只有两个交点,因为是对称性,将图形画出来就自然而然地明白,为什么是两个交点,而这两个交点刚好其y值是一样的)
r=根号3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式