如图,点E、F、G、H分别在菱形ABCD的四条边上,BE=BF=DG=DH,连接EF,FG,GH,H

如图,点E、F、G、H分别在菱形ABCD的四条边上,BE=BF=DG=DH,连接EF,FG,GH,HE得到四边形EFGH.(1)求证:四边形EFGH是矩形.(2)设AB=... 如图,点E、F、G、H分别在菱形ABCD的四条边上,BE=BF=DG=DH,连接EF,FG,GH,HE得到四边形EFGH.
(1)求证:四边形EFGH是矩形.
(2)设AB=a,∠A=60°,当BE为何值时,矩形EFGH的面积最大?
展开
 我来答
baochuankui888
高粉答主

2019-01-07 · 醉心答题,欢迎关注
知道答主
回答量:60
采纳率:100%
帮助的人:9776
展开全部

根据菱形性质的:

(1)证明:∵DG=DH,

∴∠DHG=∠DGH=180°−∠D    2    同理,∠CGF=180°−∠C    2    ,

∴∠DGH+∠CGF=360°−(∠D+∠C)    2    ,

又∵菱形ABCD中,AD∥BC,

∴∠D+∠C=180°,

∴∠DGH+∠CGF=90°,

∴∠HGF=90°,

同理,∠GHE=90°,∠EFG=90°,

∴四边形EFGH是矩形;

(2)AB=a,∠A=60°,则菱形ABCD的面积是:√3/2 a2,

设BE=x,则AE=a-x,

则△AEH的面积是:3(a−x)2/4    ,

△BEF的面积是:√3x2/ 4    ,

则矩形EFGH的面积y=√3/2 a2-√3(a−x)2/2    

扩展资料:

性质

在一个平面内,有一组邻边相等的平行四边形是菱形(rhombus)。

性质:

菱形具有平行四边形的一切性质;

菱形的四条边都相等;

菱形的对角线互相垂直平分且平分每一组对角;

菱形是轴对称图形,对称轴有2条,即两条对角线所在直线;

菱形是中心对称图形;

判定

在同一平面内,一组邻边相等的平行四边形是菱形;

对角线互相垂直的平行四边形是菱形;

四条边均相等的四边形是菱形;

对角线互相垂直平分的四边形;

两条对角线分别平分每组对角的四边形;

有一对角线平分一个内角的平行四边形;

菱形是在平行四边形的前提下定义的,首先它是平行四边形,而且是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而增加了一些特殊的性质和判定方法。

菱形的一条对角线必须与x轴平行,另一条对角线与y轴平行。不满足此条件的几何学菱形在计算机图形学上被视作一般四边形。

参考资料:百度百科——菱形

南霸天mxw
2014-10-01 · 知道合伙人教育行家
南霸天mxw
知道合伙人教育行家
采纳数:6329 获赞数:169961
本人毕业于河西学院计算机系,本科学位,自2008年毕业以来任九年级数学教师至今。

向TA提问 私信TA
展开全部

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
秋心错付
2014-10-01 · TA获得超过4309个赞
知道大有可为答主
回答量:2668
采纳率:60%
帮助的人:1208万
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
峰的记易
2014-10-12
知道答主
回答量:1
采纳率:0%
帮助的人:1327
展开全部
第(2)问中√3怎么得到的?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式