如图,E,F,G,H分别是正方体ABCD-A1B1C1D1的棱BC,CC1,C1D1,AA1的中点,求证:(1)GE∥平面BB1D1D;
如图,E,F,G,H分别是正方体ABCD-A1B1C1D1的棱BC,CC1,C1D1,AA1的中点,求证:(1)GE∥平面BB1D1D;(2)平面BDF∥平面B1D1H....
如图,E,F,G,H分别是正方体ABCD-A1B1C1D1的棱BC,CC1,C1D1,AA1的中点,求证:(1)GE∥平面BB1D1D;(2)平面BDF∥平面B1D1H.
展开
1个回答
展开全部
证明:
(1)如图,取B1D1的中点O,连接GO,OB,…(1分)
易证OG∥B1C1,
且OG=
B1C1,…(2分)
BE∥B1C1,
且BE=
B1C1…(3分)
∴OG∥BE且OG=BE,…(4分)
∴四边形BEGO为平行四边形,
∴OB∥GE…(5分)
∵OB?平面BDD1B1,GE?平面BDD1B1,
∴GE∥平面BB1D1D…(6分)
(2)由正方体的性质易知B1D1∥BD,
取DD1中点P,连接AP,FP,由于FP∥AB,且FP=AB,故四边ABFP为平行四边形,于是得AP∥FB,又HD1∥AP,故BF∥D1H,
∴BF∥D1H…(9分)
∵B1D1?平面BDF,BD?平面BDF,
∴B1D1∥平面BDF…(10分)
∵HD1?平面BDF,BF?平面BDF,
∴HD1∥平面BDF…(11分)
又∵B1D1∩HD1=D1,
∴平面BDF∥平面B1D1H…(12分)
(1)如图,取B1D1的中点O,连接GO,OB,…(1分)
易证OG∥B1C1,
且OG=
1 |
2 |
BE∥B1C1,
且BE=
1 |
2 |
∴OG∥BE且OG=BE,…(4分)
∴四边形BEGO为平行四边形,
∴OB∥GE…(5分)
∵OB?平面BDD1B1,GE?平面BDD1B1,
∴GE∥平面BB1D1D…(6分)
(2)由正方体的性质易知B1D1∥BD,
取DD1中点P,连接AP,FP,由于FP∥AB,且FP=AB,故四边ABFP为平行四边形,于是得AP∥FB,又HD1∥AP,故BF∥D1H,
∴BF∥D1H…(9分)
∵B1D1?平面BDF,BD?平面BDF,
∴B1D1∥平面BDF…(10分)
∵HD1?平面BDF,BF?平面BDF,
∴HD1∥平面BDF…(11分)
又∵B1D1∩HD1=D1,
∴平面BDF∥平面B1D1H…(12分)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询