若cosx cosy+sinx siny=1/2,sin2x+sin2y=2/3,求sin(x+y)值
展开全部
sin(x+y) = sinxcosy+cosxsiny
Sin2x=2Sinx•Cosx
Sin2y=2Siny•Cosy
2Sinx•Cosx+2Siny•Cosy=2/3
cosx cosy+sinx siny=1/2
sin2x+sin2y=sin[(x+y)+(x-y)]+sin[(x+y)-(x-y)]=sin(x+y)cos(x-y)+cos(x+y)sin(x-y)+sin(x+y)cos(x-y)-cos(x+y)sin(x-y)=2sin(x+y)cos(x-y)=2/3
∴sin(x+y)cos(x-y)=1/3 由cosxcosy+sinxsiny=1/2 cos(x-y)=1/2
∴sin(x+y)=2/3
Sin2x=2Sinx•Cosx
Sin2y=2Siny•Cosy
2Sinx•Cosx+2Siny•Cosy=2/3
cosx cosy+sinx siny=1/2
sin2x+sin2y=sin[(x+y)+(x-y)]+sin[(x+y)-(x-y)]=sin(x+y)cos(x-y)+cos(x+y)sin(x-y)+sin(x+y)cos(x-y)-cos(x+y)sin(x-y)=2sin(x+y)cos(x-y)=2/3
∴sin(x+y)cos(x-y)=1/3 由cosxcosy+sinxsiny=1/2 cos(x-y)=1/2
∴sin(x+y)=2/3
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询