1/(1+x^2)从1到正无穷上求和是多少?
2个回答
2018-07-07
展开全部
∑(n从1到正无穷) n(n+2)x^n =x∑(n从1到正无穷) n(n+2)x^(n-1) =x∑(n从1到正无穷)[(n+2)x^n]′ =x[∑(n从1到正无穷)(n+2)x^n]′ ∑(n从1到正无穷)(n+2)x^n =1/x[∑(n从1到正无穷)(n+2)x^(n+1)] =1/x∑(n从1到正无穷)[x^(n+2)]′ =1/x[∑(n从1到正无穷)x^(n+2)]′ =1/x[x3/(1-x)]′ =x(3-2x)/(1-x)2 原式=x[x(3-2x)/(1-x)2]′ =x(3-x)/(1-x)3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询