x+y≤1,即半径为1的圆,那么求y的范围,当然也可以相等的,即-√(1-x²)≤y≤√(1-x²)。
随机变量是取值有多种可能并且取每个值都有一个概率的变量,分为离散型和连续型两种,离散型随机变量的取值为有限个或者无限可列个(整数集是典型的无限可列),连续型随机变量的取值为无限不可列个(实数集是典型的无限不可列)。
虽然连续型随机变量取一个值的概率为0,但取各个不通过的值的概率还是有相对大小的,这个相对大小就是概率密度函数。这就好比一个物体,在任意一点处的质量为0,但在这一点有密度值,密度值衡量了在各点处的质量的相对大小。
扩展资料:
二维随机变量注意事项:
某一点的值是没有概率的P(X=1) = 0,某一段的概率:设F(x)是概率分布函数,如果f(x)在[-无穷,x]的积分就是F(x),f(x)>=0,则乘f(x)为x的概率密度函数。(f(x)>=0,若f(x)在点x处连续则F(x)求导可得)f(x)并没有很特殊的意义,但是通过其值得相对大小得知,若f(x)越大,对于同样长度的区间,X落在这个区间的概率越大。
必须有确定的有界区间为前提。可以把概率密度看成是纵坐标,区间看成是横坐标,概率密度对区间的积分就是面积,而这个面积就是事件在这个区间发生的概率。
参考资料来源:百度百科-二维随机变量
参考资料来源:百度百科-概率密度
2023-08-15 广告
x²+y²≤1,即半径为1的圆
那么求y的范围,当然也可以相等的
即-√(1-x²)≤y≤√(1-x²)
而就像定积分区域里某个点是否存在
不会影响整个式子的值
二重积分里某条线也是不影响的