1+1/x的x次方的极限是什么?
1个回答
展开全部
1+1/x的x次方的极限是1。
具体回答如下:(1+1/x)=e^(xln(1+1/x),只需求limxln(1+1/x)=limln(1+1/x)/(1/x),用洛必达法则,等于上下分别求导再求极限,结果为0,所以原式极限为1。
极限的求法有很多种:
1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。
2、利用恒等变形消去零因子(针对于0/0型)。
3、利用无穷大与无穷小的关系求极限。
4、利用无穷小的性质求极限。
5、利用等价无穷小替换求极限,可以将原式化简计算。
6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询