正交矩阵行列式的值是什么?

 我来答
一粥美食
高能答主

2022-02-10 · 专注为您带来别样视角的美食解说
一粥美食
采纳数:7300 获赞数:462471

向TA提问 私信TA
展开全部

正交矩阵行列式的值是若A是正交阵,则AA^T=E两边取行列式得|A||A^T|=1,即|A|^2=1,所以|A|=±1。

设A是正交矩阵:

则 AA^T=E。

两边取行列式得:|AA^T| = |E| = 1。

而 |AA^T| = |A||A^T| = |A||A| = |A|^2。

所以 |A|^2= 1。

所以 |A| = 1 or -1。

正交矩阵的特点如下:

1、实数方块矩阵是正交的,当且仅当它的列形成了带有普通欧几里得点积的欧几里得空间R的正交规范基,它为真当且仅当它的行形成R的正交基。

2、任何正交矩阵的行列式是+1或−1。这可从关于行列式的如下基本事实得出:(注:反过来不是真的;有+1行列式不保证正交性,即使带有正交列,可由下列反例证实。)

3、对于置换矩阵,行列式是+1还是−1匹配置换是偶还是奇的标志,行列式是行的交替函数。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式