正交矩阵的特征值为什么是1或负1?
展开全部
正交矩阵的特征值:
设λ是正交矩阵A的特征值,x是A的属于特征值λ的特征向量。即有Ax=λx,且x≠0。
两边取转置,得x^TA^T=λx^T,所以x^TA^TAx=λ^2x^Tx。因为A是正交矩阵,所以A^TA=E。
所以x^Tx=λ^2x^Tx。由x≠0知x^Tx是一个非零的数,故λ^2=1,所以λ=1或-1。
注意:
如果AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”)或ATA=E,则n阶实矩阵A称为正交矩阵。正交矩阵是实数特殊化的酉矩阵,因此总是属于正规矩阵。尽管我们在这里只考虑实数矩阵,但这个定义可用于其元素来自任何域的矩阵。
正交矩阵毕竟是从内积自然引出的,所以对于复数的矩阵这导致了归一要求。正交矩阵不一定是实矩阵。实正交矩阵(即该正交矩阵中所有元都是实数)可以看做是一种特殊的酉矩阵,但也存在一种复正交矩阵,这种复正交矩阵不是酉矩阵。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询