x为锐角 满足sin(X-30°)=1/3 求cosx?

 我来答
华源网络
2022-09-24 · TA获得超过5592个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:146万
展开全部
sin(x-30°)=1/3
sinxcos30°-cosxsin30°=1/3
(√3/2)sinx=1/3+cosx/2
sinx=2(1/3+cosx/2)/√3
又(sinx)^2+(cosx)^2=1,因此
4(1/3+cosx/2)^2/3+cosx^2=1
整理,得
4(cosx)^2+12cosx-23=0
(cosx+3/2)^2=8
cosx=-3/2+2√2或cosx=-3/2-2√2(,7,把sin(X-30°)先拆开(具体的公式我忘记了),然后根据cosx(平方)=1-sinx(平方),可将原式化为关于cosx的一元二次方程,然后求解,得到两个解,因为x为锐角,可以排除其中一个答案。,2,∵x∈(0º,90º),且sin(x-30º)=1/3.∴cos(x-30º)=(2√2)/3.∴cosx=cos[30º+(x-30º)]=cos30ºcos(x-30º)-sin30ºsin(x-30º)=(√3/2)×(2√2/3)-(1/2)×(1/3)=[(2√6)-1]/6.,1,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式