过抛物线y^2=4x的焦点F的直线L与抛物线相交于A,B两点,求弦AB的中点的轨迹方程
1个回答
展开全部
设AB的中点为O(x,y);A(x1,y1),B(x2,y2);
∵直线过抛物线y^2=4x得焦点,而焦点F(1,0)
∴设直线的方程为:y=k(x-1) .........................(1)
将(1)^2代入抛物线方程中可得:
k^2(x-1)^2=4x =>k^2x^2-(2k^2+4)x+k^2=0
∴x1+x2=(2k^2+4)/k^2
∵y1+y2=k(x1+x2-2)=4/k ..............................(2)又∵x=(x1+x2)/2=(k^2+2)/k^2=(2+(2/k^2)).................(3)
y=(y1+y2)/2=2/k =>2/k^2=y^2/2.........................(4)
∴将(4)代入(3)可得:
所以AB的中心轨迹方程为:y^2=2x-4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询