线性代数行列式和矩阵的区别和联系,麻烦说的详细一点!
展开全部
数学上,矩阵就是由方程组的系数及常数所构成的方阵。把用在解线性方程组上既方便,又直观。例如对于方程组。
a1x+b1y+c1z=d1
a2x+b2y+c2z=d2
a3x+b3y+c3z=d3
来说,我们可以构成一个矩阵:
/ \
|a1 b1 c1 d1 |
| |
|a2 b2 c2 d2 |
| |
|a3 b3 c3 d3 |
\ /
因为这些数字是有规则地排列在一起,形状像矩形,所以数学家们称之为矩阵,通过矩阵的变化,就可以得出方程组的解来。
矩阵就是一个数表,它不能从整体上被看成一个数(只有一个数的1阶矩阵除外),当矩阵的行数与列数相等为n时,我们把相应的数代入上面我提到的n^2元函数中就得到一个行列式。代入的方法则是简单的把两个表对应起来。
在作为一个数表的矩阵上,我们本可以任意的定义运算规则(真的是指你爱怎么定义就怎么定义),但是实际上我们多是把矩陈用于解决某些特殊类型的问题,所以你想要知道某种运算,比如乘法运算是怎么来的就得看年它们是做什么用的(比如用于线性变换)。
n阶行列式实质上是一个n^2元的函数,当把n^2个元素都代上常数时,自然得到一个数。当我们写的时候,写成一个表是为了方便的反映函数的物性。当然,决不是指任何n^2元函数都是行列式,具体的行列式函数定义你找书一看看。为了让你自己觉得好理解一些,你可以试着照行列式的定义把行列式写成多项式和的常见形式,当然那个形式比较复杂,但本质上与行列式是一样的,只是写成行列式易于直观的做各种运算处理。
简单的说
矩阵是一个数表
行列式是行数列数相等的方阵按某种算法得出的一个数
如果本题有什么不明白可以追问,如果满意请点击右下角“采纳为满意回答”
如果有其他问题请采纳本题后,另外发并点击我的头像向我求助,答题不易,请谅解,谢谢。
O(∩_∩)O,记得采纳,互相帮助
祝学习进步!
a1x+b1y+c1z=d1
a2x+b2y+c2z=d2
a3x+b3y+c3z=d3
来说,我们可以构成一个矩阵:
/ \
|a1 b1 c1 d1 |
| |
|a2 b2 c2 d2 |
| |
|a3 b3 c3 d3 |
\ /
因为这些数字是有规则地排列在一起,形状像矩形,所以数学家们称之为矩阵,通过矩阵的变化,就可以得出方程组的解来。
矩阵就是一个数表,它不能从整体上被看成一个数(只有一个数的1阶矩阵除外),当矩阵的行数与列数相等为n时,我们把相应的数代入上面我提到的n^2元函数中就得到一个行列式。代入的方法则是简单的把两个表对应起来。
在作为一个数表的矩阵上,我们本可以任意的定义运算规则(真的是指你爱怎么定义就怎么定义),但是实际上我们多是把矩陈用于解决某些特殊类型的问题,所以你想要知道某种运算,比如乘法运算是怎么来的就得看年它们是做什么用的(比如用于线性变换)。
n阶行列式实质上是一个n^2元的函数,当把n^2个元素都代上常数时,自然得到一个数。当我们写的时候,写成一个表是为了方便的反映函数的物性。当然,决不是指任何n^2元函数都是行列式,具体的行列式函数定义你找书一看看。为了让你自己觉得好理解一些,你可以试着照行列式的定义把行列式写成多项式和的常见形式,当然那个形式比较复杂,但本质上与行列式是一样的,只是写成行列式易于直观的做各种运算处理。
简单的说
矩阵是一个数表
行列式是行数列数相等的方阵按某种算法得出的一个数
如果本题有什么不明白可以追问,如果满意请点击右下角“采纳为满意回答”
如果有其他问题请采纳本题后,另外发并点击我的头像向我求助,答题不易,请谅解,谢谢。
O(∩_∩)O,记得采纳,互相帮助
祝学习进步!
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询