
已知数列{an}满足a1=4,a2=2,a3=1,又{an+1-an}成等差数列(n∈N*)则an等于______
已知数列{an}满足a1=4,a2=2,a3=1,又{an+1-an}成等差数列(n∈N*)则an等于______....
已知数列{an}满足a1=4,a2=2,a3=1,又{an+1-an}成等差数列(n∈N*)则an等于______.
展开
1个回答
展开全部
设bn=an+1-an,则b1=-2,b2=-1,
∵{an+1-an}成等差数列,
∴{bn}成等差数列,
∴{bn}是以-2为首项,1为公差的等差数列,
∴bn=n-3,
∴an=a1+(a2-a1)+…+(an-an-1)=a1+b1+…+bn-1=4+
=
(n2?7n+14).
故答案为:
(n2?7n+14).
∵{an+1-an}成等差数列,
∴{bn}成等差数列,
∴{bn}是以-2为首项,1为公差的等差数列,
∴bn=n-3,
∴an=a1+(a2-a1)+…+(an-an-1)=a1+b1+…+bn-1=4+
(n?1)(?2+n?4) |
2 |
1 |
2 |
故答案为:
1 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询