如图,在□ABCD中,E、F分别在边BA、DC的延长线上,已知AE=CF,P、Q分别是DE和FB的中点,求证:四边形EQ

如图,在□ABCD中,E、F分别在边BA、DC的延长线上,已知AE=CF,P、Q分别是DE和FB的中点,求证:四边形EQFP是平行四边形.... 如图,在□ABCD中,E、F分别在边BA、DC的延长线上,已知AE=CF,P、Q分别是DE和FB的中点,求证:四边形EQFP是平行四边形. 展开
 我来答
白净又纯良的才俊8729
2014-11-28 · 超过86用户采纳过TA的回答
知道答主
回答量:149
采纳率:92%
帮助的人:69.2万
展开全部
根据平行四边形的性质可得AB∥CD,AB=CD,由AE=CF可得BE∥DF,BE=DF,即可证得四边形BFDE为平行四边形,则可得BF∥ED,BF=ED,再结合P、Q分别是DE和FB的中点即可证得结论.


试题分析:证明:∵ ABCD
∴AB∥CD,AB=CD
∵AE=CF
∴BE∥DF,BE=DF
BFDE
∴BF∥ED,BF=ED
∵P、Q分别是DE和FB的中点
∴EP∥QF,EP=QF
EQFP.
点评:平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式