设函数y=f(x),x∈R.(1)若函数y=f(x)为偶函数并且图象关于直线x=a(a≠0)对称,求证:函数y=f(x

设函数y=f(x),x∈R.(1)若函数y=f(x)为偶函数并且图象关于直线x=a(a≠0)对称,求证:函数y=f(x)为周期函数.(2)若函数y=f(x)为奇函数并且图... 设函数y=f(x),x∈R.(1)若函数y=f(x)为偶函数并且图象关于直线x=a(a≠0)对称,求证:函数y=f(x)为周期函数.(2)若函数y=f(x)为奇函数并且图象关于直线x=a(a≠0)对称,求证:函数y=f(x)是以4a为周期的函数.(3)请对(2)中求证的命题进行推广,写出一个真命题,并予以证明. 展开
 我来答
爵爷3674
2014-12-28 · 超过69用户采纳过TA的回答
知道答主
回答量:128
采纳率:75%
帮助的人:61.7万
展开全部
(1)由图象关于x=a对称得f(2a-x)=f(x),即f(2a+x)=f(-x),
因为f(x)为偶函数,所以f(-x)=f(x),从而f(2a+x)=f(x),所以f(x)是以2a为周期的函数.
(2)若f(x)为奇函数,则图象关于原点对称,f(-x)=-f(x),
由图象关于直线x=a(a≠0)对称得,f(2a-x)=f(x),∴f(2a+x)=f(-x)=-f(x),
所以f(4a+x)=f(x),f(x)是以4a为周期的函数.
(3)推广:若函数y=f(x)图象关于点(m,n)对称且关于直线x=a(a≠0)对称,
则函数f(x)是以4(m-a)为周期的周期函数.
由条件图象关于点(m,n)对称,故2n-f(x)=f(2m-x),又图象关于直线x=a(a≠0)对称,f(2a-x)=f(x),
所以,2n-f(2a-x)=f(2m-x),即2n-f(x)=f(2m-2a+x).
当a=m时,f(x)=n为常值函数,是周期函数.
当a≠m时,由 2n-f(x)=f(2m-2a+x) 得:
2n-f(2m-2a+x)=f(4m-4a+x),∴2n-(2n-f(x))=f(4m-4a+x),
因此,f[4(m-a)+x]=f(x),所以,f(x)是以4(m-a)为周期的函数.

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式