在数列{an}中,a1=2,an+1=an+2n+1(n∈N*)(1)求证:数列{an-2n}为等差数列;(2)设数列{bn}满足bn=l

在数列{an}中,a1=2,an+1=an+2n+1(n∈N*)(1)求证:数列{an-2n}为等差数列;(2)设数列{bn}满足bn=log2(an+1-n),若(1+... 在数列{an}中,a1=2,an+1=an+2n+1(n∈N*)(1)求证:数列{an-2n}为等差数列;(2)设数列{bn}满足bn=log2(an+1-n),若(1+1b2)(1+1b3)(1+1b4)…(1+1bn)>kn+1对一切n∈N*且n≥2恒成立,求实数k的取值范围. 展开
 我来答
手机用户76064
2014-10-10 · 超过67用户采纳过TA的回答
知道答主
回答量:124
采纳率:0%
帮助的人:156万
展开全部
(1)(an+1-2n+1)-(an-2n)=an+1-an-2n=1
故数列{an-2n}为等差数列,且公差d=1.
an-2n=(a1-2)+(n-1)d=n-1,an=2n+n-1;
(2)由(1)可知an=2n+n-1,∴bn=log2(an+1-n)=n
设f(n)=(1+
1
b2
)(1+
1
b3
)(1+
1
b4
)
…(1+
1
bn
)×
1
n+1
,(n≥2)
则f(n+1)=(1+
1
b2
)(1+
1
b3
)(1+
1
b4
)
…(1+
1
bn
)×(1+
1
bn+1
)×
1
n+2

两式相除可得
f(n+1)
f(n)
=(1+
1
bn+1
)×
n+1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消