在数列{an}中,a1=2,an+1=an+2n+1(n∈N*)(1)求证:数列{an-2n}为等差数列;(2)设数列{bn}满足bn=l
在数列{an}中,a1=2,an+1=an+2n+1(n∈N*)(1)求证:数列{an-2n}为等差数列;(2)设数列{bn}满足bn=log2(an+1-n),若(1+...
在数列{an}中,a1=2,an+1=an+2n+1(n∈N*)(1)求证:数列{an-2n}为等差数列;(2)设数列{bn}满足bn=log2(an+1-n),若(1+1b2)(1+1b3)(1+1b4)…(1+1bn)>kn+1对一切n∈N*且n≥2恒成立,求实数k的取值范围.
展开
1个回答
展开全部
(1)(an+1-2n+1)-(an-2n)=an+1-an-2n=1
故数列{an-2n}为等差数列,且公差d=1.
an-2n=(a1-2)+(n-1)d=n-1,an=2n+n-1;
(2)由(1)可知an=2n+n-1,∴bn=log2(an+1-n)=n
设f(n)=(1+
)(1+
)(1+
)…(1+
)×
,(n≥2)
则f(n+1)=(1+
)(1+
)(1+
)…(1+
)×(1+
)×
,
两式相除可得
=(1+
)×
故数列{an-2n}为等差数列,且公差d=1.
an-2n=(a1-2)+(n-1)d=n-1,an=2n+n-1;
(2)由(1)可知an=2n+n-1,∴bn=log2(an+1-n)=n
设f(n)=(1+
1 |
b2 |
1 |
b3 |
1 |
b4 |
1 |
bn |
1 | ||
|
则f(n+1)=(1+
1 |
b2 |
1 |
b3 |
1 |
b4 |
1 |
bn |
1 |
bn+1 |
1 | ||
|
两式相除可得
f(n+1) |
f(n) |
1 |
bn+1 |
| ||
|