常微分方程,求解非齐次线性方程的初值问题!
C2 = 0,y = -t/3
dx/dt + 2x/t = 1, 一阶线性微分方程
x = e^du(-∫2dt/t) [∫1e^(∫2dt/t)dt + C1]
= (1/t^2) (∫t^2dt + C1) = (1/t^2) (t^3/3 + C1)
= t/3 + C1/t^2, x(1) = 1/3 代入得 C1 = 0
x = t/3。
dy/dt = t/3 + y - 1 + 2/3,
dy/dt - y = (t-1)/3
y = e^(∫dt) [(1/3)∫(t-1)e^(-∫dt)dt + C2]
= e^t [(1/3)∫(t-1)e^(-t)dt + C2]
= e^t [-(1/3)∫(t-1)de^(-t) + C2]
= e^t [-(1/3)(t-1)e^(-t) + (1/3)∫e^(-t)dt + C2]
= e^t [-(1/3)(t-1)e^(-t) - (1/3)e^(-t) + C2]
= e^t [-(1/3)te^(-t) + C2] = -t/3 + C2e^t
y(1) = -1/3 代入得 C2 = 0, y = -t/3
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
dx/dt + 2x/t = 1, 一阶线性微分方程
x = e^du(-∫2dt/t) [∫1e^(∫2dt/t)dt + C1]
= (1/t^2) (∫t^2dt + C1) = (1/t^2) (t^3/3 + C1)
= t/3 + C1/t^2, x(1) = 1/3 代入得 C1 = 0
x = t/3。
dy/dt = t/3 + y - 1 + 2/3,
dy/dt - y = (t-1)/3
y = e^(∫dt) [(1/3)∫(t-1)e^(-∫dt)dt + C2]
= e^t [(1/3)∫(t-1)e^(-t)dt + C2]
= e^t [-(1/3)∫(t-1)de^(-t) + C2]
= e^t [-(1/3)(t-1)e^(-t) + (1/3)∫e^(-t)dt + C2]
= e^t [-(1/3)(t-1)e^(-t) - (1/3)e^(-t) + C2]
= e^t [-(1/3)te^(-t) + C2] = -t/3 + C2e^t
y(1) = -1/3 代入得 C2 = 0, y = -t/3
扩展资料:
非齐次线性方程组Ax=b的求解步骤:
(1)对增广矩阵B施行初等行变换化为行阶梯形。若R(A)<R(B),则方程组无解。
(2)若R(A)=R(B),则进一步将B化为行最简形。
(3)设R(A)=R(B)=r;把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示。
参考资料来源:百度百科-非齐次线性方程组