请教4阶幻方的求解方法
四阶幻方的方法很多种,其中最简单的方法:【顺序填数,以中心点对称互换数字】。
互换数字的方法有两种:
1、互换对角线上的数;
2、互换非对角线上的数。
此外,可用象棋步法完成四阶完美幻方,不仅行、列及两条对角线的和值等于幻和值,而且所有泛对角线(与对角线平行的斜线)的和值也等于幻和值。想象将此四阶完美幻方像瓷砖一样平铺,然后任取4×4个格,都是一个四阶幻方。
扩展资料
起源记载
在一个由若干个排列整齐的数组成的正方形中,图中任意一横行、一纵行及对角线的几个数之和都相等,具有这种性质的图表,称为“幻方”。中国古代称为“河图”、“洛书”,又叫“纵横图”。
九宫洛书蕴含奇门遁甲的布阵之道。九宫之数源于《易经》。幻方也称纵横图、魔方、魔阵,它是科学的结晶与吉祥的象征,发源于中国古代的洛书——九宫图。
公元前一世纪,西汉宣帝时的博士戴德在他的政治礼仪著作《大戴礼·明堂篇》中就有“二、九、四、七、五、三、六、一、八”的洛书九宫数记载。洛书被世界公认为组合数学的鼻祖,它是中华民族对人类的伟大贡献之一。
洛书以其高度抽象的内涵,对中国古代政治伦理、数学、天文气象、哲学、医学、宗教等都产生了重要影响。
在远古传说中,于治国安邦上也具有积极的寓意!包括洛书在内的幻方自古以来在亚、欧、美洲不少国家都被作为驱邪避凶的吉祥物,这种古代地域广泛的图腾应该说是极其少见的。1975年上海人民出版社出版的自然辩证法丛书《自然科学大事年表》,
《大戴礼》记载,中国古代有象征吉祥的河图洛书纵横图,即为九宫算,被认为是现代‘组合数学’最古老的发现。”
2500年前,孔子在他研究《易经》的著作《系词上传》中记载了:“河出图,洛出书,圣人则之。”最早将数字与洛书相连的记载是2300年前的《庄子·天运》,它认为:“天有六极五常,帝王顺之则治,逆之则凶。九洛之事,治成德备,监照下土,天下戴之,此谓上皇。”
明代数学家程大位在《算法统宗》中也曾发出“数何肇?其肇自图、书乎?伏羲得之以画卦,大禹得之以序畴,列圣得之以开物”的感叹,大意是说,数起源于远古时代黄河出现的河图与洛水出现的洛书,伏羲依靠河图画出八卦,大禹按照洛书划分九州,并制定治理天下的九类大法。
大禹从洛书中数的相互制约,均衡统一得到启发而制定国家的法律体系,使得天下一统,归于大治,这是借鉴思维的开端。这种活化思维的方式已成为科学灵感的来源之一。从洛书发端的幻方在数千年后更加生机盎然,被称为具有永恒魅力的数学问题。
十三世纪,中国南宋数学家杨辉在世界上首先开展了对幻方的系统研究,欧洲十四世纪也开始了这方面的工作。著名数学家费尔玛、欧拉都进行过幻方研究,
如今,幻方仍然是组合数学的研究课题之一,经过一代代数学家与数学爱好者的共同努力,幻方与它的变体所蕴含的各种神奇的科学性质正逐步得到揭示。它已在组合分析、实验设计、图论、数论、群、对策论、纺织、工艺美术、程序设计、人工智能等领域得到广泛应用。
1977年,4阶幻方还作为人类的特殊语言被美国旅行者1号、2号飞船携入太空,向广袤的宇宙中可能存在的外星人传达人类的文明信息与美好祝愿。
参考资料:百度百科-幻方
然后,就要看题目的意思按照以上方式解题,也可以使用完美数法,但本人不推荐,求采纳