我解释一下什么是本征方程,本征值
1个回答
展开全部
楼主 你好
如果算符作用于函数等于一个常数g乘以该函数,则该方程称为本征方程。其中该函数称为算符的本征函数,g是算符的对应于本征函数的本征值。
量子力学中的许多问题都是求解体系的力学量算符的本征方程以找出其本征值和本征函数,从而确定体系力学量的各种可能的取值;另一方面,本征值常常是分立且不连续的(数学上,常由定解问题的有限边界值条件造成),这从另一个角度反映了量子力学中的离散现象。
例如,定态薛定谔方程实质上就是能量算符的本征方程,能量则是其本征值。对于量子定态问题,有限的边界条件常会导致本征值有限且分立,这也就是微观下能量分级的不连续性。
特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。
如果算符作用于函数等于一个常数g乘以该函数,则该方程称为本征方程。其中该函数称为算符的本征函数,g是算符的对应于本征函数的本征值。
量子力学中的许多问题都是求解体系的力学量算符的本征方程以找出其本征值和本征函数,从而确定体系力学量的各种可能的取值;另一方面,本征值常常是分立且不连续的(数学上,常由定解问题的有限边界值条件造成),这从另一个角度反映了量子力学中的离散现象。
例如,定态薛定谔方程实质上就是能量算符的本征方程,能量则是其本征值。对于量子定态问题,有限的边界条件常会导致本征值有限且分立,这也就是微观下能量分级的不连续性。
特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询