1到10中,至少取出几个数,才能保证其中必有2个数之和为100
抽屉原理从2,4,6,……,98中至少选出多少个数,才能保证其中必有两个数的和是100从自然数1-30中,最多取出多少个数,才能使取出的这些数里任意两个数之和都不是7的倍...
抽屉原理
从2,4,6,……,98中至少选出多少个数,才能保证其中必有两个数的和是100
从自然数1-30中,最多取出多少个数,才能使取出的这些数里任意两个数之和都不是7的倍数? 展开
从2,4,6,……,98中至少选出多少个数,才能保证其中必有两个数的和是100
从自然数1-30中,最多取出多少个数,才能使取出的这些数里任意两个数之和都不是7的倍数? 展开
1个回答
展开全部
抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理.
把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果.这个人所皆知的常识就是抽屉原理在日常生活中的体现.用它可以解决一些相当复杂甚至无从下手的问题.
原理1:把n+1个元素分成n类,不管怎么分,则一定有一类中有2个或2个以上的元素.
原理2:把m个元素任意放入n(n<m=个集合,则一定有一个集合呈至少要有k个元素.
其中 k= (当n能整除m时)
〔 〕+1 (当n不能整除m时)
(〔 〕表示不大于 的最大整数,即 的整数部分)
原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素.
把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果.这个人所皆知的常识就是抽屉原理在日常生活中的体现.用它可以解决一些相当复杂甚至无从下手的问题.
原理1:把n+1个元素分成n类,不管怎么分,则一定有一类中有2个或2个以上的元素.
原理2:把m个元素任意放入n(n<m=个集合,则一定有一个集合呈至少要有k个元素.
其中 k= (当n能整除m时)
〔 〕+1 (当n不能整除m时)
(〔 〕表示不大于 的最大整数,即 的整数部分)
原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询