简谐运动的微分方程如何解

 我来答
科创17
2022-06-21 · TA获得超过5929个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:178万
展开全部
无阻尼的简谐自由运动的微分方程:
mx''+kx=0 (1)
初始条件:
x(0)=x0 x'(0)=x'0 (2)
(1)的特征方程:ms^2+k=0 (3)
解出: s1=(k/m)^0.5 s2=-(k/m)^0.5 (4)
(1)的通x(t)=C1e^(s1t)+C2e^(s2t) (5)
根据(2)-> C1+C2=x0
C1s1+C2s2=x'0
解出C1,C2,代入s1,s2 就可以得到(1)的通解

对于强迫振动,方程为: mx''+kx=f(t) (6)
其解法是:先找出(6)的特解,再与(5)相加,就是(6)的通解.
对于有阻尼的振动,解法略微复杂一点.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式