(x-2y)y'=2x-y,x^2 -xy+y^2=c,验证所给而原方程所确定的函数为所给微分方程的解

 我来答
户如乐9318
2022-07-02 · TA获得超过6667个赞
知道小有建树答主
回答量:2559
采纳率:100%
帮助的人:140万
展开全部
原式为(x-2y)y'=2x-y①
对x∧2-xy+y∧2=c两端关于x隐函数求导,得
2x-y-xy'+2yy'=0
∴xy'-2yy'=2x-y
∴(x-2y)y'=2x-y.②
观察只,①式与②式完全相等,
从而该方程是所给微分方程的解!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式