41.15.已知函数f(x)=2x∧2+(4-m)x+4-m,g(x)=mx,若存在一个实数x,使f(x)与g(x)均不是正数,则实数m...
41.15.已知函数f(x)=2x∧2+(4-m)x+4-m,g(x)=mx,若存在一个实数x,使f(x)与g(x)均不是正数,则实数m的取值范围是___________...
41.15.已知函数f(x)=2x∧2+(4-m)x+4-m,g(x)=mx,若存在一个实数x,使f(x)与g(x)均不是正数,则实数m的取值范围是________________.m≥4
展开
1个回答
展开全部
设此实数为a
则可得两不等式
2a^2+4a-am+4-m≤0 ①
am≤0 ②
从②式中可得a与m符号互异,或其中有一个必为零
下面分类讨论
1.设a>0,则m≤0
则①式可得,m≥2(a+1)+1/(a+1)≥2√2
与m≤0要求不符,所以删去
2.a=0,则m∈R
则①式可得,4-m≤0得m≥4 满足
3.-1<a<0,则m≥0
则①式可得,m≥2(a+1)+1/(a+1)≥2√2 满足
4.a=-1,m≥0
则①式可得,2≤0,不可能
5.a<-1,m≥0
则①式可得,m≤2(a+1)+1/(a+1),由图像可得,m≤0,所以与m≥0矛盾,删去
综上,当a∈R时,m≥4满足
则可得两不等式
2a^2+4a-am+4-m≤0 ①
am≤0 ②
从②式中可得a与m符号互异,或其中有一个必为零
下面分类讨论
1.设a>0,则m≤0
则①式可得,m≥2(a+1)+1/(a+1)≥2√2
与m≤0要求不符,所以删去
2.a=0,则m∈R
则①式可得,4-m≤0得m≥4 满足
3.-1<a<0,则m≥0
则①式可得,m≥2(a+1)+1/(a+1)≥2√2 满足
4.a=-1,m≥0
则①式可得,2≤0,不可能
5.a<-1,m≥0
则①式可得,m≤2(a+1)+1/(a+1),由图像可得,m≤0,所以与m≥0矛盾,删去
综上,当a∈R时,m≥4满足
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询