中心在坐标原点,焦点在x轴上的椭圆的离心率为根号3/2

它与直线x+y-1=0相交于M、N,若以MN为直径的圆经过坐标原点,求椭圆的方程求简便算法~~~... 它与直线x+y-1=0相交于M、N,若以MN为直径的圆经过坐标原点,求椭圆的方程
求简便算法~~~
展开
ThyFhw
2009-10-02 · TA获得超过2.6万个赞
知道大有可为答主
回答量:4637
采纳率:50%
帮助的人:2334万
展开全部
e=c/a=√3/2, a^2 =c^2 +b^2, →
a^2 =4·b^2.
令b^2=t(>0);则 a^2 =4t;
则可设该椭圆方程为
x^2 /4t + y^2 /t =1;
即 x^2 + 4y^2 =4t;
与方程 x+y-1=0 联立,得
5x^2 -8x +(4-4t)=0;
解得
xM=[4+2√(5t-1)]/5, xN=[4-2√(5t-1)]/5.
所以:
yM=[1-2√(5t-1)]/5, yN=[1+2√(5t-1)]/5.

向量OM=( [4+2√(5t-1)]/5,[1-2√(5t-1)]/5 );
向量ON=( [4-2√(5t-1)]/5,[1+2√(5t-1)]/5 ).
若以MN为直径的圆经过坐标原点,则根据圆的性质可知,∠MON为直角.
则:向量OM⊥向量ON.
则:向量OM·向量ON=0.
即: ( [4+2√(5t-1)]/5,[1-2√(5t-1)]/5 )·( [4-2√(5t-1)]/5,[1+2√(5t-1)]/5 )=0;

[4+2√(5t-1)]·[4-2√(5t-1)]/25 + [1-2√(5t-1)]·[1+2√(5t-1)]/25 =0;
→ [16 -4(5t-1)] + [1-4(5t-1)] =0;
→ 整理得: t=5/8;
则椭圆的方程就是
x^2 + 4y^2 =5/2.

//你可以用交点坐标方程相减的方法;用差商法代出斜率,坐标和为中点值;但所有的方法计算量都是一样的;因为所要求的东西实际上一样都不会省略掉.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式