
求函数f(x)=2x+1/x+1在区间[1,4]上的最大值最小值
4个回答
展开全部
这题不该用基本不等式来解,应该用分离常数的方法,并结合反比例函数的图像性质进行判断。
f(x)=2x+1/x+1
=[2(x+1)-1]/x+1
=2-[1/(x+1)]
因为函数y=1/x在区间[1,4]上为减函数,所以y=-1/(x+1)在区间[1,4]上为增函数,则f(x)在区间[1,4]上也为增函数(这是复合函数单调性判断的“增增减减”性质)。
所以,f(x)=2x+1/x+1在区间[1,4]上的最大值=f(1)=3/2
f(x)=2x+1/x+1在区间[1,4]上的最小值=f(4)=9/5
我知道这个方法是对的,但结果对不对我不知道!
f(x)=2x+1/x+1
=[2(x+1)-1]/x+1
=2-[1/(x+1)]
因为函数y=1/x在区间[1,4]上为减函数,所以y=-1/(x+1)在区间[1,4]上为增函数,则f(x)在区间[1,4]上也为增函数(这是复合函数单调性判断的“增增减减”性质)。
所以,f(x)=2x+1/x+1在区间[1,4]上的最大值=f(1)=3/2
f(x)=2x+1/x+1在区间[1,4]上的最小值=f(4)=9/5
我知道这个方法是对的,但结果对不对我不知道!
展开全部
由基本不等式可知,f(x)当且仅当x=(根号2)/2时取到最小值2(根号2)+1,所以在区间[1,4]上,f(x)的最大值在两个端点处取得,带入求值,得到,最大值为f(4)=41/4。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)=2x+1/x+1=(2(x+1)-1)/(x+1)=2-1/(x+1)
1<=x<=4
2<=x+1)<=5
所以,1/5<=1/(x+1)<=1/2
-1/2<=-1/(x+1)<=-1/5
3/2<=2-1/(x+1)<=9/5
即最大值是9/5,最小值是3/2
1<=x<=4
2<=x+1)<=5
所以,1/5<=1/(x+1)<=1/2
-1/2<=-1/(x+1)<=-1/5
3/2<=2-1/(x+1)<=9/5
即最大值是9/5,最小值是3/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)=2x+1/x+1=(2(x+1)-1)/(x+1)=2-1/(x+1)
1<=x<=4
2<=x+1)<=5
所以,1/5<=1/(x+1)<=1/2
-1/2<=-1/(x+1)<=-1/5
3/2<=2-1/(x+1)<=9/5
即最大值是9/5,最小值是3/2
1<=x<=4
2<=x+1)<=5
所以,1/5<=1/(x+1)<=1/2
-1/2<=-1/(x+1)<=-1/5
3/2<=2-1/(x+1)<=9/5
即最大值是9/5,最小值是3/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询