初三的一道圆的证明题 望各位兄弟帮个忙
10.如图,弦EF⊥直径MN于H,弦MC延长线交EF的反向延长线于A,求证:MA•MC=MB•MD关于B点和D点我也不知道是怎么回事。不过我可以将...
10.如图,弦EF⊥直径MN于H,弦MC延长线交EF的反向延长线于A,求证:MA•MC=MB•MD
关于B点和D点 我也不知道是怎么回事。不过我可以将网址发给你们 你们去看一下 是这张试卷的最后一道题!
http://htzx.dyedu.cn/grwy/myweb/%B3%F5%C8%FD%CA%FD%D1%A7%D7%DC%B8%B4%CF%B0/%B5%DA%C8%FD%CA%AE%BF%CE%20%20%D4%B2%B5%C4%D3%D0%B9%D8%D0%D4%D6%CA.doc 展开
关于B点和D点 我也不知道是怎么回事。不过我可以将网址发给你们 你们去看一下 是这张试卷的最后一道题!
http://htzx.dyedu.cn/grwy/myweb/%B3%F5%C8%FD%CA%FD%D1%A7%D7%DC%B8%B4%CF%B0/%B5%DA%C8%FD%CA%AE%BF%CE%20%20%D4%B2%B5%C4%D3%D0%B9%D8%D0%D4%D6%CA.doc 展开
5个回答
展开全部
AM^2=MH^2+AH^2
BM^2=MH^2+BH^2
AM*AC=AE*AF
BE*BF=BM=BD
根据这4个条件 可以得出 想结论成立 需要AH^2-AE*AF=BH^2+BE*BF
设EF=a AE=x BH=y
直接代进去 会发现x y 是给消掉的
所以AH^2-AE*AF=BH^2+BE*BF成立
所以原结论成立 证毕
楼上不懂乱混分 A B C D都是符合条件的随意的点
BM^2=MH^2+BH^2
AM*AC=AE*AF
BE*BF=BM=BD
根据这4个条件 可以得出 想结论成立 需要AH^2-AE*AF=BH^2+BE*BF
设EF=a AE=x BH=y
直接代进去 会发现x y 是给消掉的
所以AH^2-AE*AF=BH^2+BE*BF成立
所以原结论成立 证毕
楼上不懂乱混分 A B C D都是符合条件的随意的点
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2009-10-27
展开全部
证明:连接DN,NC
∵MN是直径
∴∠D=90°
∵∠MHB=90°=∠D,∠BAH=∠DAN
∴△MBH∽△MND
∴MB*MD=MH*MN
∵∠MHA=∠MCN=90°,∠CMN=∠ACH
∴△AMH∽△NMC
∴MH*MN=MC*MA
∴MA•MC=MB•MD
看了,没问题,你就采纳这个答案吧,初中的证法。
∵MN是直径
∴∠D=90°
∵∠MHB=90°=∠D,∠BAH=∠DAN
∴△MBH∽△MND
∴MB*MD=MH*MN
∵∠MHA=∠MCN=90°,∠CMN=∠ACH
∴△AMH∽△NMC
∴MH*MN=MC*MA
∴MA•MC=MB•MD
看了,没问题,你就采纳这个答案吧,初中的证法。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
请补充B和D这两个点是怎么出来的。然后我才能给出证明,谢谢!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明A,C,B,D四点共元
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询