已知数列{an}满足an+1=12an2-n2an+1(n∈N*)且a1=3.(1)求a2,a3,a4的值及数列{an}的通项an;(2)设
已知数列{an}满足an+1=12an2-n2an+1(n∈N*)且a1=3.(1)求a2,a3,a4的值及数列{an}的通项an;(2)设数列{bn}满足bn=2an+...
已知数列{an}满足an+1=12an2-n2an+1(n∈N*)且a1=3.(1)求a2,a3,a4的值及数列{an}的通项an;(2)设数列{bn}满足bn=2an+1an(an+1)(an+2),Sn为数列{bn}的前n项和,求证:760≤Sn<1324.
展开
1个回答
展开全部
解答:(1)解:由an+1=
an2-
an+1,a1=3,得
a2=
×32?
×3+1=4.
a3=
×42?4+1=5.
a4=
×52?
×5+1=6.
…
由此推测,an=n+2.
下面用数学归纳法证明:
当n=1时,a1=3成立;
假设当n=k时成立,即ak=k+2,
则当n=k+1时,ak+1=
ak2?
ak+1=
(k+2)2?
(k+2)+1
=
=k+3=(k+1)+2,结论成立.
综上,对于任意的n∈N*,都有an=n+2;
(2)证明:由bn=
,得
bn=
=
.
当n=1时,b1=
=
,
又bn>0,
∴数列{bn}的前n项和Sn≥S1=
;
又
=
?
?
[
?
].
∴Sn=b1+b2+…+bn=(
?
+
?
+
?
+…+
?
)
-
[
?
+
?
+…
?
]
=
+
?
?
?
+
=
?
<
.
综上,
≤Sn<
.
1 |
2 |
n |
2 |
a2=
1 |
2 |
1 |
2 |
a3=
1 |
2 |
a4=
1 |
2 |
3 |
2 |
…
由此推测,an=n+2.
下面用数学归纳法证明:
当n=1时,a1=3成立;
假设当n=k时成立,即ak=k+2,
则当n=k+1时,ak+1=
1 |
2 |
k |
2 |
1 |
2 |
k |
2 |
=
2k+6 |
2 |
综上,对于任意的n∈N*,都有an=n+2;
(2)证明:由bn=
2an+1 |
an(an+1)(an+2) |
bn=
2(n+2)+1 |
(n+2)(n+3)(n+4) |
2n+5 |
(n+2)(n+3)(n+4) |
当n=1时,b1=
7 |
3×4×5 |
7 |
60 |
又bn>0,
∴数列{bn}的前n项和Sn≥S1=
7 |
60 |
又
2n+5 |
(n+2)(n+3)(n+4) |
1 |
n+2 |
1 |
n+4 |
1 |
2 |
1 |
(n+2)(n+3) |
1 |
(n+3)(n+4) |
∴Sn=b1+b2+…+bn=(
1 |
3 |
1 |
5 |
1 |
4 |
1 |
6 |
1 |
5 |
1 |
7 |
1 |
n+2 |
1 |
n+4 |
-
1 |
2 |
1 |
3×4 |
1 |
4×5 |
1 |
4×5 |
1 |
5×6 |
1 |
(n+2)(n+3) |
1 |
(n+3)(n+4) |
=
1 |
3 |
1 |
4 |
1 |
24 |
1 |
n+3 |
1 |
n+4 |
1 |
(n+3)(n+4) |
=
13 |
24 |
2 |
n+4 |
13 |
24 |
综上,
7 |
60 |
13 |
24 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询