如图,AB=CD,AE⊥BC于E,DF⊥BC于F,CE=BF,连接AD交EF于点O,猜想O为哪些线段的中点?请选择其中一种结

如图,AB=CD,AE⊥BC于E,DF⊥BC于F,CE=BF,连接AD交EF于点O,猜想O为哪些线段的中点?请选择其中一种结论证明.... 如图,AB=CD,AE⊥BC于E,DF⊥BC于F,CE=BF,连接AD交EF于点O,猜想O为哪些线段的中点?请选择其中一种结论证明. 展开
 我来答
憽人癟0002
2014-09-22 · TA获得超过135个赞
知道答主
回答量:194
采纳率:100%
帮助的人:115万
展开全部
点O为AD、EF、BC的中点.
证明:连接AF,DE,
∵CE=BF,
∴CE+EF=BF+EF,
∴CF=BE.
在△AEB和△DFC中,
BE=CF,
∠AEB=∠CFD=90°,
AB=CD,
∴△AEB≌△CFD(SAS),
∴AE=DF.
∵AE⊥BC,DF⊥BC,
∴AE ∥ DF,
∴四边形AEDF为平行四边形.
∴点O为AD、EF的中点.
又∵CE=BF,
∴BO=CO,
∴点O为BC的中点.
故点O为AD、EF、BC的中点.

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式