已知函数f(x)=|2x﹣a|+a.(1)若不等式f(x)≤6的解集为{x|﹣2≤x≤3},求实数a的值;(2)在(1)的

已知函数f(x)=|2x﹣a|+a.(1)若不等式f(x)≤6的解集为{x|﹣2≤x≤3},求实数a的值;(2)在(1)的条件下,若存在实数n使f(n)≤m﹣f(﹣n)成... 已知函数f(x)=|2x﹣a|+a.(1)若不等式f(x)≤6的解集为{x|﹣2≤x≤3},求实数a的值;(2)在(1)的条件下,若存在实数n使f(n)≤m﹣f(﹣n)成立,求实数m的取值范围. 展开
 我来答
DorowhyvGV
推荐于2016-06-25 · 超过61用户采纳过TA的回答
知道答主
回答量:130
采纳率:0%
帮助的人:113万
展开全部
解:(1)由|2x﹣a|+a≤6得|2x﹣a|≤6﹣a,
∴a﹣6≤2x﹣a≤6﹣a,即a﹣3≤x≤3,
∴a﹣3=﹣2,
∴a=1.
(2)由(1)知f(x)=|2x﹣1|+1,
令φ(n)=f(n)+f(﹣n),
则φ(n)=|2n﹣1|+|2n+1|+2= 
∴φ(n)的最小值为4,
故实数m的取值范围是[4,+∞).

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式