cos²x导数是多少
9个回答
展开全部
f(X)=cosx×cosx,f'(X)=(-sinxcosx)+(-cosxsinx)=-2sinxcosx
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐于2017-10-24 · 知道合伙人教育行家
天雨下凡
知道合伙人教育行家
向TA提问 私信TA
知道合伙人教育行家
采纳数:17564
获赞数:65145
爱电脑、爱数学、爱音乐; 熟悉VB、C/C++、JAVA; EXCEL与VBA有所研究…… 数学,一些会,一些被忘却……
向TA提问 私信TA
关注
引用前回国好的回答:
令x=asect,dx=sect tant dt
原式=∫atant*d(asect)
=a^2∫tant sect tant dt (1)
=a^2∫tant d sec t
=a^2tant sect -a^2∫sect sec^2 t dt
=a^2tant sect -a^2∫ sect(tan^2 t+1) dt
=a^2tant sect -a^2∫sect dt -a^2∫tant sect tant dt (2)
联立(1),(2)
所以
a^2∫tant sect tant dt=a^2/2[tant sect -∫sect dt]
=a^2/2[tant sect- ln|sect+tan t| ]+C
=a^2/2*x√(x²-a²)-a^2/2ln|x+√(x²-a²)|+c
令x=asect,dx=sect tant dt
原式=∫atant*d(asect)
=a^2∫tant sect tant dt (1)
=a^2∫tant d sec t
=a^2tant sect -a^2∫sect sec^2 t dt
=a^2tant sect -a^2∫ sect(tan^2 t+1) dt
=a^2tant sect -a^2∫sect dt -a^2∫tant sect tant dt (2)
联立(1),(2)
所以
a^2∫tant sect tant dt=a^2/2[tant sect -∫sect dt]
=a^2/2[tant sect- ln|sect+tan t| ]+C
=a^2/2*x√(x²-a²)-a^2/2ln|x+√(x²-a²)|+c
展开全部
y=cos²x
令t=cosx
y=t²
y'=2t×t'
y'=2cosx×(cosx)'
y'=2cosx×(-sinx)
y'=-2sinxcosx
y'=-sin2x
令t=cosx
y=t²
y'=2t×t'
y'=2cosx×(cosx)'
y'=2cosx×(-sinx)
y'=-2sinxcosx
y'=-sin2x
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
令x=asect,dx=sect tant dt
原式=∫atant*d(asect)
=a^2∫tant sect tant dt (1)
=a^2∫tant d sec t
=a^2tant sect -a^2∫sect sec^2 t dt
=a^2tant sect -a^2∫ sect(tan^2 t+1) dt
=a^2tant sect -a^2∫sect dt -a^2∫tant sect tant dt (2)
联立(1),(2)
所以
a^2∫tant sect tant dt=a^2/2[tant sect -∫sect dt]
=a^2/2[tant sect- ln|sect+tan t| ]+C
=a^2/2*x√(x²-a²)-a^2/2ln|x+√(x²-a²)|+c
原式=∫atant*d(asect)
=a^2∫tant sect tant dt (1)
=a^2∫tant d sec t
=a^2tant sect -a^2∫sect sec^2 t dt
=a^2tant sect -a^2∫ sect(tan^2 t+1) dt
=a^2tant sect -a^2∫sect dt -a^2∫tant sect tant dt (2)
联立(1),(2)
所以
a^2∫tant sect tant dt=a^2/2[tant sect -∫sect dt]
=a^2/2[tant sect- ln|sect+tan t| ]+C
=a^2/2*x√(x²-a²)-a^2/2ln|x+√(x²-a²)|+c
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询