求y=2x+√(4x²-8x+3)的最小值
展开全部
y=2x+√(4x²-8x+3)
y
=
2x
+ √
(2x
-
3)(2x-1)
x
=
3/2
或
1/2
若
x
=
3/2
y
=
2(3/2)
+ √
[4(3/2)]²
-
8(3/2)
+
3
y
=
3
+ √36
-
12
+
3
y
=
3
+ √27
y
=
3
+ √3√9
y
=
3
+
3√3
y
=
8.19
若
x
=
1/2
y
=
2(1/2)
+ √
[4(3/2)]²
-
8(3/2)
+
3
y
=
1
+ √4
-
14
+
3
y
=
1
+ √3
y
=
1
+
1.73
y
=
4.73
y的最小值是
:
4.73
y
=
2x
+ √
(2x
-
3)(2x-1)
x
=
3/2
或
1/2
若
x
=
3/2
y
=
2(3/2)
+ √
[4(3/2)]²
-
8(3/2)
+
3
y
=
3
+ √36
-
12
+
3
y
=
3
+ √27
y
=
3
+ √3√9
y
=
3
+
3√3
y
=
8.19
若
x
=
1/2
y
=
2(1/2)
+ √
[4(3/2)]²
-
8(3/2)
+
3
y
=
1
+ √4
-
14
+
3
y
=
1
+ √3
y
=
1
+
1.73
y
=
4.73
y的最小值是
:
4.73
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询