椭圆与直线的位置关系
1个回答
展开全部
直线与椭圆的位置关系有三种,分别是相切、相离、相交。
相切是平面上的圆与另一个几何形状的一种位置关系。若直线与曲线交于两点,且这两点无限相近,趋于重合时,该直线就是该曲线在该点的切线。初中数学中,若一条直线垂直于圆的半径且过圆的半径的外端,称这条直线与圆相切。
相离,数学用语,指圆与圆没有公共点且一个圆在另一个圆外面时的现象。
在数学中,相交是两个几何图形之间关系的一种。两个图形相交是指它们有公共的部分,或者说同时属于两者的点的集合不是空集。若两个几何图形在某个地方有且只有有一个交点,则可以称为相切而不是相交。如果两个图形完全重合,则一般不称为相交。
圆的相交关系:
欧几里得几何中,同一平面上的两个圆之间的关系有四种:相离、相切、相容和相交。相离指两圆没有交点而且没有一个圆在另一个圆内部。相切是指两圆只有一个交点。相交是指两圆有多于一个交点。相容是指两圆没有交点且一个圆在另一个内部。
两个圆相交当且仅当两个圆心之间的距离严格小于两圆的半径之和,并严格大于两圆的半径之差。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询