为什么函数极限可以转化为数列极限计算?

 我来答
白雪忘冬
高粉答主

2023-04-29 · 在我的情感世界留下一方美好的文字
白雪忘冬
采纳数:1007 获赞数:376641

向TA提问 私信TA
展开全部

海涅定理是沟通函数极限和数列极限之间的桥梁。根据海涅定理,求函数极限则可化为求数列极限,同样求数列极限也可转化为求函数极限。因此,函数极限的所有性 质都可用数列极限的有关性质来加以证明。

海涅定理的内容:

函数f(x)在x→x0时极限等于A的充要条件是,对于任何满足以下三个条件的数列{xn},都有n→+∞时f(xn)的极限等于A成立:

(1)对任何正整数n,都有xn≠x0;

(2)对任何正整数n,f(xn)都要有定义;

(3)n→+∞时xn→x0.

要证明一个函数极限不存在有两种思路:

一是找到一个满足定理中三个条件的数列{xn}使得n→+∞时f(xn)的极限不存在;

二是找到两个满足定理中三个条件的数列{xn}和{x'n}使得n→+∞时f(xn)和f(x'n)不相等.

此外,若某个函数极限的值已经确定,则对应的数列极限也为此值,这里的理论依据也是海涅定理. 通过这个道理,我们可以将某些数列极限转化为函数极限进行计算(这样方便求导、使用洛必达法则等),然后转化回数列极限.

参考资料来源:百度百科-海涅定理

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式