已知a,b,c是不全相等的正数.求证:lg(a+b/2)+lg(b+c/2)+lg(a+c/2)>lga+lgb+lgc

请数学高手们把过程写的详细一些.... 请数学高手们把过程写的详细一些. 展开
百度网友da9c0e0
2006-09-14 · TA获得超过1068个赞
知道小有建树答主
回答量:253
采纳率:0%
帮助的人:409万
展开全部
lg(a+b/2)
```````___
≥lg(√ab)
=(1/2)*lg(ab)
=(1/2)*(lga+lgb)
=(1/2)*lga+(1/2)*lgb
即lg(a+b/2)≥(1/2)*lga+(1/2)*lgb
同理lg(a+c/2)≥(1/2)*lga+(1/2)*lgc
lg(b+c/2)≥(1/2)*lgb+(1/2)*lgc
以上三式相加便得
lg(a+b/2)+lg(b+c/2)+lg(a+c/2)≥lga+lgb+lgc
又因为a,b,c不全相等,所以等号不成立。
所以lg(a+b/2)+lg(b+c/2)+lg(a+c/2)>lga+lgb+lgc
qsmm
2006-09-14 · TA获得超过267万个赞
知道顶级答主
回答量:28.3万
采纳率:90%
帮助的人:12.9亿
展开全部
左=lg[(a+b)/2]+lg[(b+c)/2]+lg[(c+a)/2]大于等于lg(根号下ab)+lg(根号下bc)+lg(根号下ac)=lg(abc)=lga+lgb+lgc=右
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式