已知a,b,c是不全相等的正数求证(a+b)(b+c)(c+a)>8abc
3个回答
展开全部
a+b>=2sqrt(ab) 等号仅当a=b时成立
同理
a+c>=2sqrt(ac)
c+b>=2sqrt(bc)
相乘得到
(a+b)(b+c)(c+a)>=8abc等号仅当a=b=c时成立。但a,b,c不全相等,所以是严格大于号。
同理
a+c>=2sqrt(ac)
c+b>=2sqrt(bc)
相乘得到
(a+b)(b+c)(c+a)>=8abc等号仅当a=b=c时成立。但a,b,c不全相等,所以是严格大于号。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
利用基本不等式,可得:
(a+b)≥2√(ab)
(b+c)≥2√(bc)
(c+a)≥2√(ca)
以上三式相乘,得:
(a+b)(b+c)(c+a)≥2√(ab)×2√(bc)×2√(ca)=8
(a+b)≥2√(ab)
(b+c)≥2√(bc)
(c+a)≥2√(ca)
以上三式相乘,得:
(a+b)(b+c)(c+a)≥2√(ab)×2√(bc)×2√(ca)=8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询