已知函数f(x)=根号3sinωx乘以cosωx-cos^2ωx(ω>0)的最小正周期为π/2
已知函数f(x)=根号3sinωx乘以cosωx-cos^2ωx(ω>0)的最小正周期为π/2(1)求ω的值(2)若0<x<等于π/3.求f(x)的最大值和最小值在线等急...
已知函数f(x)=根号3sinωx乘以cosωx-cos^2ωx(ω>0)的最小正周期为π/2
(1)求ω的值
(2)若0<x<等于π/3.求f(x)的最大值和最小值
在线等
急啊~ 展开
(1)求ω的值
(2)若0<x<等于π/3.求f(x)的最大值和最小值
在线等
急啊~ 展开
3个回答
展开全部
1、
f(x)=(√3/2)sin2ωx-(1+cos2ωx)/2
=(√3/2)sin2ωx-(1/2)cos2ωx-1/2
=sin(2ωx-z)-1/2
tanz=(1/2)÷(√3/2)=1/√3
所以z=π/6
所以f(x)=sin(2ωx-π/6)-1/2
所以T=2π/2ω=π/2
ω=2
2、
f(x)=sin(4x-π/6)-1/2
0<x<=π/3
0<4x<=4π/3
-π/6<4x-π/6<=7π/6
所以4x-π/6=7π/6,sin(4x-π/6)最小=-1/2
4x-π/6=π/2,sin(4x-π/6)最答=1
所以-1/2<=sin(4x-π/6)<=1
再减去1/2
所以最大值=1/2,最小值=-1
f(x)=(√3/2)sin2ωx-(1+cos2ωx)/2
=(√3/2)sin2ωx-(1/2)cos2ωx-1/2
=sin(2ωx-z)-1/2
tanz=(1/2)÷(√3/2)=1/√3
所以z=π/6
所以f(x)=sin(2ωx-π/6)-1/2
所以T=2π/2ω=π/2
ω=2
2、
f(x)=sin(4x-π/6)-1/2
0<x<=π/3
0<4x<=4π/3
-π/6<4x-π/6<=7π/6
所以4x-π/6=7π/6,sin(4x-π/6)最小=-1/2
4x-π/6=π/2,sin(4x-π/6)最答=1
所以-1/2<=sin(4x-π/6)<=1
再减去1/2
所以最大值=1/2,最小值=-1
展开全部
1.解:f(x)=√3sinωx*cosωx-cos^2ωx(ω>0)
=(√3)\2sin2wx-(2cos^2wx)\2
=(√3)\2sin2wx-(2cos^2wx)\2+1\2-1\2
=(√3)\2sin2wx-(2cos^2wx-1)\2-1\2
=(√3)\2sin2wx-(1\2)cos2x-1\2
=sin(2wx-π\6)-1\2
因为T=因为π\2 所以 2π\2w=π\2 所以w=2
2.解:f(x)=sin(4x-π\6)-1\2 当0<x≤π\3时 sin(4x-π\6)∈(-1\2,1] 所以 f(x)最大值为 1\2 最小值为 1
=(√3)\2sin2wx-(2cos^2wx)\2
=(√3)\2sin2wx-(2cos^2wx)\2+1\2-1\2
=(√3)\2sin2wx-(2cos^2wx-1)\2-1\2
=(√3)\2sin2wx-(1\2)cos2x-1\2
=sin(2wx-π\6)-1\2
因为T=因为π\2 所以 2π\2w=π\2 所以w=2
2.解:f(x)=sin(4x-π\6)-1\2 当0<x≤π\3时 sin(4x-π\6)∈(-1\2,1] 所以 f(x)最大值为 1\2 最小值为 1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1、
f(x)=(√3/2)sin2ωx-(1+cos2ωx)/2
=(√3/2)sin2ωx-(1/2)cos2ωx-1/2
=sin(2ωx-z)-1/2
tanz=(1/2)÷(√3/2)=1/√3
所以z=π/6
所以f(x)=sin(2ωx-π/6)-1/2
所以T=2π/2ω=π/2
ω=2
2、
f(x)=sin(4x-π/6)-1/2
0<x<=π/3
0<4x<=4π/3
-π/6<4x-π/6<=7π/6
所以4x-π/6=7π/6,sin(4x-π/6)最小=-1/2
4x-π/6=π/2,sin(4x-π/6)最答=1
所以-1/2<=sin(4x-π/6)<=1
再减去1/2
所以最大值=1/2,最小值=-1
f(x)=(√3/2)sin2ωx-(1+cos2ωx)/2
=(√3/2)sin2ωx-(1/2)cos2ωx-1/2
=sin(2ωx-z)-1/2
tanz=(1/2)÷(√3/2)=1/√3
所以z=π/6
所以f(x)=sin(2ωx-π/6)-1/2
所以T=2π/2ω=π/2
ω=2
2、
f(x)=sin(4x-π/6)-1/2
0<x<=π/3
0<4x<=4π/3
-π/6<4x-π/6<=7π/6
所以4x-π/6=7π/6,sin(4x-π/6)最小=-1/2
4x-π/6=π/2,sin(4x-π/6)最答=1
所以-1/2<=sin(4x-π/6)<=1
再减去1/2
所以最大值=1/2,最小值=-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询