判断命题“已知a,x为实数,若关于x的不等式x2+(2a+1)x+a2+2≤0的解集非空,则a≥1
1个回答
展开全部
满足逆否命题与原命题同真同假。
逆否命题:已知a,x为实数,若a<1,则关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集.
判断如下:
抛物线y=x2+(2a+1)x+a2+2开口向上,
判别式Δ=(2a+1)2-4(a2+2)=4a-7,
∵a<1,∴4a-7<0,即Δ<0,
∴关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集.故逆否命题为真命题.
逆否命题:已知a,x为实数,若a<1,则关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集.
判断如下:
抛物线y=x2+(2a+1)x+a2+2开口向上,
判别式Δ=(2a+1)2-4(a2+2)=4a-7,
∵a<1,∴4a-7<0,即Δ<0,
∴关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集.故逆否命题为真命题.
更多追问追答
追问
如果证明原命题会a≥7/4才能满足,在a≥1,a≤7/4之间根本不满足,会证出假命题,然后根据逆否命题与原命题同真同假,则是假命题。
追答
你理解错了··a>=7/4 是不是可以推出来a>=1 这没有问题啊·
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询